Impacts of quantum dots in molecular detection and bioimaging of cancer
نویسندگان
چکیده
INTRODUCTION A number of assays have so far been exploited for detection of cancer biomarkers in various malignancies. However, the expression of cancer biomarker(s) appears to be extremely low, therefore accurate detection demands sensitive optical imaging probes. While optical detection using conventional fluorophores often fail due to photobleaching problems, quantum dots (QDs) offer stable optical imaging in vitro and in vivo. METHODS In this review, we briefly overview the impacts of QDs in biology and its applications in bioimaging of malignancies. We will also delineate the existing obstacles for early detection of cancer and the intensifying use of QDs in advancement of diagnostic devices. RESULTS Of the QDs, unlike the II-VI type QDs (e.g., cadmium (Cd), selenium (Se) or tellurium (Te)) that possess inherent cytotoxicity, the I-III-VI 2 type QDs (e.g., AgInS2, CuInS2, ZnS-AgInS2) appear to be less toxic bioimaging agents with better control of band-gap energies. As highly-sensitive bioimaging probes, advanced hybrid QDs (e.g., QD-QD, fluorochrome-QD conjugates used for sensing through fluorescence resonance energy transfer (FRET), quenching, and barcoding techniques) have also been harnessed for the detection of biomarkers and the monitoring of delivery of drugs/genes to the target sites. Antibody-QD (Ab-QD) and aptamer- QD (Ap-QD) bioconjugates, once target the relevant biomarker, can provide highly stable photoluminescence (PL) at the target sites. In addition to their potential as nanobiosensors, the bioconjugates of QDs with homing devices have successfully been used for the development of smart nanosystems (NSs) providing targeted bioimaging and photodynamic therapy (PDT). CONCLUSION Having possessed great deal of photonic characteristics, QDs can be used for development of seamless multifunctional nanomedicines, theranostics and nanobiosensors.
منابع مشابه
Cadmium-free quantum dots as time-gated bioimaging probes in highly-autofluorescent human breast cancer cells.
We report cadmium-free, biocompatible (Zn)CuInS(2) quantum dots with long fluorescence lifetimes as superior bioimaging probes using time-gated detection to suppress cell autofluorescence and improve the signal : background ratio by an order of magnitude. These results will be important for developing non-toxic fluorescence imaging probes for ultrasensitive biomedical diagnostics.
متن کاملNanotechnology and Neuroscience Convergence: A Novel Tool for Neurotransmitters Monitoring
Since neurotransmitters significantly influence the brain activity, our understanding of the human brain will remain imperfect until all aspects relating to them become clear. One of the key challenges in neuroscience researches and therapies is elucidating the mechanisms by which the neurotransmitter release take place and is regulated in quantity and in time. Despite the enormous number of st...
متن کاملآشکارسازی 2، 4، 6- تری نیتروتولوئن با استفاده از نقاط کوانتومی کادمیم- تلوراید اصلاح شده
The rapid and simple detection of 2,4,6-trinitrotoluene (TNT) as a high consumption explosive from nitroaromatic family, because identification of anti-terrorist sabotage and terrorism, always has been of high importance..Nowadays, methods for explosive compounds detection have been developed by using quantum dots (QDs). Quantum dots are nanoparticles of a new generation of nanotechnology that ...
متن کاملA Simple Image Analysis Method for Determination of Glucose by using Glucose Oxidase CdTe/TGA Quantum Dots
Glucose, as the major energy source in cellular metabolism, plays an important role in the natural growth of cells. Herein, a simple, rapid and low-cost method for the glucose determination by utilizing glucose oxidase and CdTe/thioglycolic acid (TGA) quantum dots (QDs) on a thin layer chromatography (TLC) plate has been described. The detection was based on the combination of the glucose enzym...
متن کاملNanomedicine – The role of newer drug delivery technologies in cancer
Nanotechnology has slowly but steadily revolutionized the diagnosis, imaging and treatment of cancer. Detecting cancer at earliest stages, locating the tumor at different areas in the body and specific delivery of the drugs to malignant cells including surgically inaccessible tumors are the core areas of medical and pharmaceutical research across the world. In this endeavour, Nanodevices have e...
متن کامل